Crash Course Physics is set up to be supplemental if you're taking a class in the topic, or to give you an introduction if you're just naturally curious. They tend to go fast, but the beauty of putting these on YouTube is you can back up and watch it again and again to make sure you're grokking everything going on.

Crash Course Physics - Netflix

Type: Documentary

Languages: English

Status: Ended

Runtime: 12 minutes

Premier: 2016-03-31

Crash Course Physics - Kinematics - Netflix

Kinematics is a branch of classical mechanics that describes the motion of points, bodies (objects), and systems of bodies (groups of objects) without considering the mass of each or the forces that caused the motion. Kinematics, as a field of study, is often referred to as the “geometry of motion” and is occasionally seen as a branch of mathematics. A kinematics problem begins by describing the geometry of the system and declaring the initial conditions of any known values of position, velocity and/or acceleration of points within the system. Then, using arguments from geometry, the position, velocity and acceleration of any unknown parts of the system can be determined. The study of how forces act on masses falls within kinetics, not kinematics. For further details, see analytical dynamics. Kinematics is used in astrophysics to describe the motion of celestial bodies and collections of such bodies. In mechanical engineering, robotics, and biomechanics kinematics is used to describe the motion of systems composed of joined parts (multi-link systems) such as an engine, a robotic arm or the human skeleton. Geometric transformations, also called rigid transformations, are used to describe the movement of components in a mechanical system, simplifying the derivation of the equations of motion. They are also central to dynamic analysis. Kinematic analysis is the process of measuring the kinematic quantities used to describe motion. In engineering, for instance, kinematic analysis may be used to find the range of movement for a given mechanism, and working in reverse, using kinematic synthesis to design a mechanism for a desired range of motion. In addition, kinematics applies algebraic geometry to the study of the mechanical advantage of a mechanical system or mechanism.

Crash Course Physics - Particle trajectories under constant acceleration - Netflix

t        =                                                            V                            −                                                V                                                  0                                                                    A                                            {\displaystyle t={\frac {\mathbf {V} -\mathbf {V} _{0}}{\mathbf {A} }}}  

P                (        t        )        =                              P                                0                          +                  ∫                      0                                t                                    V                (        τ        )        d        τ        =                              P                                0                          +                  ∫                      0                                t                          (                              V                                0                          +                  A                τ        )        d        τ        =                              P                                0                          +                              V                                0                          t        +                                            1              2                                                A                          t                      2                          .              {\displaystyle \mathbf {P} (t)=\mathbf {P} {0}+\int ^{t}\mathbf {V} (\tau )d\tau =\mathbf {P} {0}+\int ^{t}(\mathbf {V} {0}+\mathbf {A} \tau )d\tau =\mathbf {P} +\mathbf {V} _{0}t+{\tfrac {1}{2}}\mathbf {A} t^{2}.}  

|                          |                          A                          |                          |                =        a        ,                  |                          |                          V                          |                          |                =        v        ,                  |                          |                          P                −                              P                                0                                    |                          |                =        Δ        x              {\displaystyle ||\mathbf {A} ||=a,||\mathbf {V} ||=v,||\mathbf {P} -\mathbf {P} _{0}||=\Delta x}   where                     Δ        x              {\displaystyle \Delta x}   can be any curvaceous path taken as the constant tangential acceleration is applied along that path, so

Additional relations between displacement, velocity, acceleration, and time can be derived. Since the acceleration is constant,

This can be simplified using the notation for the magnitudes of the vectors

Crash Course Physics - References - Netflix